Calculus II - Day 5

Prof. Chris Coscia, Fall 2024 Notes by Daniel Siegel

18 September 2024

Comparison Testing

Goals for today:

• Compare series we understand (p-series, geometric) to more complicated series to determine whether they converge or diverge.

Monday: p-test

$$\sum_{k=1}^{\infty} \frac{1}{k^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \frac{1}{4^p} + \dots$$

- Converges when p > 1
- Diverges when $p \leq 1$

What about these related series?

1. $\sum_{k=1}^{\infty} \frac{1}{k^2 + 2k}$ 2. $\sum_{k=1}^{\infty} \frac{3}{\sqrt{k - \frac{1}{2}}}$

(Direct) Comparison Test:

Let $\sum a_k$ and $\sum b_k$ be two series with positive terms.

- 1. If $a_k \leq b_k$ for all k and $\sum b_k$ converges, then $\sum a_k$ converges, as well.
- 2. If $a_k \ge b_k$ for all k and $\sum b_k$ diverges, then $\sum a_k$ diverges, as well.

<u>Ex.</u> $\sum_{k=1}^{\infty} \frac{1}{k^2+2k}$ compare to $\sum_{k=1}^{\infty} \frac{1}{k^2}$

$$a_k = \frac{1}{k^2 + 2k}, \quad b_k = \frac{1}{k^2}$$

For all k,

$$\frac{1}{k^2+2k} \leq \frac{1}{k^2}$$

and $\sum_{k=1}^{\infty} \frac{1}{k^2}$ converges, so by the Comparison Test,

$$\sum_{k=1}^{\infty} \frac{1}{k^2 + 2k}$$

also converges.

Ex.
$$\sum_{k=1}^{\infty} \frac{3}{\sqrt{k-1/2}}$$
 compare to $\sum_{k=1}^{\infty} \frac{3}{\sqrt{k}} = 3 \sum_{k=1}^{\infty} \frac{1}{k^{1/2}}$

p-series with p = 1/2: diverges.

Since

$$\frac{3}{\sqrt{k-1/2}} \ge \frac{3}{\sqrt{k}}$$

for all positive integers k, by the Comparison Test, our series diverges.

<u>Ex.</u> $\sum_{k=1}^{\infty} \frac{1}{2^k + 3^k}$ compare with $\sum_{k=1}^{\infty} \frac{1}{3^k}$

Geometric series with $r = \frac{1}{3}$, so we know it converges.

Since

$$\frac{1}{2^k + 3^k} \le \frac{1}{3^k} \text{ for all } k,$$

$$\sum_{k=1}^{\infty} \frac{1}{2^k + 3^k}$$
 converges by the Comparison Test.

<u>Ex.</u> $\sum_{k=2}^{\infty} \frac{3k+6}{\sqrt{k^4-3}}$ compare with $\sum_{k=2}^{\infty} \frac{3}{k}$ (diverges; *p*-series with p=1)

$$\frac{3k+6}{\sqrt{k^4-3}} \ge \frac{3k}{\sqrt{k^4-3}} \ge \frac{3k}{\sqrt{k^4}} = \frac{3k}{k^2} = \frac{3}{k}$$

Thus,

$$\sum_{k=2}^{\infty} \frac{3k+6}{\sqrt{k^4-3}}$$
 diverges by the Comparison Test

Ex. $\sum_{k=2}^{\infty} \frac{\ln(k)}{k}$ let's compare with $\sum_{k=2}^{\infty} \frac{1}{k}$

Is it true that $\frac{\ln(k)}{k} \ge \frac{1}{k}$? *Not always* (not true for k = 2), but okay when $k \ge 3$. We can still use the Comparison Test, as long as $a_k \ge b_k$ eventually. Since $\sum_{k=2}^{\infty} \frac{1}{k}$ diverges and $\frac{1}{k} \le \frac{\ln(k)}{k}$ eventually,

$$\sum_{k=2}^{\infty} \frac{\ln(k)}{k} \text{ diverges.}$$

Ex. $\sum_{k=2}^{\infty} \frac{5}{k^3+2k+3}$ compare to $\sum_{k=2}^{\infty} \frac{5}{k^3}$

*p-series with p = 3 converges.

Since

$$\frac{5}{k^3 + 2k + 3} \le \frac{5}{k^3}$$
 for all k ,

 \Rightarrow our series converges.

Comparison Test: useful when the inequalities "point in the right direction." Ex. $\sum_{k=2}^{\infty} \frac{5}{k^3 - 2k + 3}$ Issue: $\frac{5}{k^3 - 2k + 3} > \frac{5}{k^3}$ for some k, so we can't directly compare. We need a stronger test...

... The Limit Comparison Test!

Let $\sum a_k$ and $\sum b_k$ be two series with positive terms. Let

$$L = \lim_{k \to \infty} \frac{a_k}{b_k}$$

- 1. If $0 < L < \infty$, then $\sum a_k$ and $\sum b_k$ either both converge or both diverge.
- 2. If L = 0 $(b_k \gg a_k)$, then if $\sum b_k$ converges, then $\sum a_k$ converges.
- 3. If $L = \infty$ ($b_k \ll a_k$), then if $\sum b_k$ diverges, then $\sum a_k$ diverges.

(We're comparing growth rates.)

Ex. $\sum_{k=2}^{\infty} \frac{5k^4 - 2k^2 + 3}{2k^6 - k + 5}$ Use the Limit Comparison Test (LCT) with $\sum_{k=2}^{\infty} \frac{1}{k^2}$ (which converges).

$$L = \lim_{k \to \infty} \frac{\frac{5k^4 - 2k^2 + 3}{2k^6 - k + 5}}{\frac{1}{k^2}} = \lim_{k \to \infty} \frac{(5k^4 - 2k^2 + 3)k^2}{2k^6 - k + 5}$$
$$= \frac{5}{2}$$

So by LCT (1), this series converges.

<u>Ex.</u> $\sum_{k=3}^{\infty} \frac{k}{4^k}$ try comparing to $\sum_{k=3}^{\infty} \frac{1}{4^k}$.

$$\lim_{k \to \infty} \left(\frac{\frac{k}{4^k} \cdot 4^k}{\frac{1}{4^k} \cdot 4^k} \right) = \lim_{k \to \infty} \frac{k}{1} = \lim_{k \to \infty} k = \infty$$

 \Rightarrow LCT doesn't allow us to make a conclusion from this.

We showed that this series shrinks slower than a series we know converges. Compare instead with $\sum_{k=3}^{\infty} \frac{1}{2^k}$:

$$\lim_{k \to \infty} \left(\frac{\frac{k}{4^k} \cdot 2^k}{\frac{1}{2^k} \cdot 2^k} \right) = \lim_{k \to \infty} \frac{k \cdot 2^k}{4^k} = \lim_{k \to \infty} \frac{k}{2^k} = 0$$

(Because power grows more slowly than exponentials)

$$\ln(k) \ll k^p \ll b^k \ll k! \ll k^k$$

<u>Ex.</u> $\sum_{k=2}^{\infty} \frac{\ln(k)}{k^2}$

• Won't work if you compare with $\sum \frac{1}{k^2}$ or $\sum \frac{1}{k}$

Try $\frac{1}{k^{1.5}}$:

$$\lim_{k \to \infty} \frac{\left(\frac{\ln(k)}{k^2} \cdot k^{1.5}\right)}{\left(\frac{1}{k^{1.5}} \cdot k^{1.5}\right)} = \lim_{k \to \infty} \frac{\ln(k)}{\sqrt{k}} = 0$$

because $\ln(k) \ll \sqrt{k}$.

Our series is smaller than the convergent series $\sum \frac{1}{k^{1.5}}$, so it converges.